sábado, 22 de diciembre de 2012

Cobre



EL COBRE

Estado Natural

El cobre ocupa el lugar 25 en abundancia entre los elementos de la corteza terrestre, frecuentemente se encuentra agregado con otros metales como el oro, plata, bismuto y plomo, apareciendo en pequeñas partículas en rocas, aunque se han hallado masas compactas de hasta 420 toneladas. El cobre se encuentra por todo el mundo en la lava basáltica, localizándose el mayor depósito conocido en la cordillera de los Andes en Chile, bajo la forma de pórfido. Este país posee aproximadamente el 25% de las reservas mundiales conocidas de cobre y a comienzos de 1980 se convirtió en el primer país productor de este metal. Los principales yacimientos se localizan en Chuquicamata, Andina, El Salvador y El Teniente.
Las principales fuentes del cobre son la calcopirita y la bornita, sulfuros mixtos de hierro y cobre. Otras menas importantes son los sulfuros de cobre calcosina y covellina; la primera se encuentra en Chile, México, Estados Unidos y la antigua URSS, y la segunda, en Estados Unidos.

APLICACIONES

El cobre tiene una gran variedad de aplicaciones a causa de sus ventajosas propiedades, como son su elevada conductividad del calor y electricidad, la resistencia a la corrosión, así como su maleabilidad y ductilidad, además de su belleza. Debido a su extraordinaria conductividad, sólo superada por la plata, el uso más extendido del cobre se da en la industria eléctrica. Su ductilidad permite transformarlo en cables de cualquier diámetro, a partir de 0,025 mm. La resistencia a la tracción del alambre de cobre estirado es de unos 4.200 kg/cm2. Puede usarse tanto en cables y líneas de alta tensión exteriores como en el cableado eléctrico en interiores, cables de lámparas y maquinaria eléctrica en general: generadores, motores, reguladores, equipos de señalización, aparatos electromagnéticos y sistemas de comunicaciones.
A lo largo de la historia, el cobre se ha utilizado para acuñar monedas y confeccionar útiles de cocina, tinajas y objetos ornamentales. En un tiempo era frecuente reforzar con cobre la quilla de los barcos de madera para proteger el casco ante posibles colisiones. El cobre se puede galvanizar fácilmente como tal o como base para otros metales. Con este fin se emplean grandes cantidades en la producción de electrotipos (reproducción de caracteres de impresión).

PRODUCCIÓN

El cobre metálico y las menas de cobre, como la calcopirita y la bornita, que se encuentran en depósitos cerca de la superficie terrestre, se explotan a cielo abierto. Después es necesario refinarlo para separar el cobre de impurezas como sulfuros, carbonatos, hierro y silicatos.
Los yacimientos de cobre contienen generalmente concentraciones muy bajas del metal. Ésta es la causa de que muchas de las distintas fases de producción tengan por objeto la eliminación de impurezas. La mena de cobre se tritura y muele antes de ser introducida en una cámara de flotación, en la que el cobre se concentra en la superficie, mientras los fragmentos sobrantes se hunden. Después, el concentrado, que se denomina carga, se introduce en un horno de reverbero que separa más impurezas. Durante el proceso de fundición, se extraen los gases de desecho, y el material forma en el fondo del horno un charco de hierro y cobre fundidos, llamado mata. La capa anaranjada de metal impuro en la superficie de la mata es escoria, que se drena y extrae mientras la mata de cobre sigue su proceso en un convertidor. El cobre fundido del convertidor es moldeado, y debe ser refinado una vez más por electrólisis antes de utilizarse para la fabricación de productos como cables eléctricos y herramientas

PROPIEDADES Y CARACTERÍSTICAS DEL COBRE

El cobre posee varias propiedades físicas que propician su uso industrial en múltiples aplicaciones, siendo el tercer metal, después del hierro y del aluminio, más consumido en el mundo. Es de color rojizo y de brillo metálico y, después de la plata, es el elemento con mayor conductividad eléctrica y térmica. Es un material abundante en la naturaleza; tiene un precio accesible y se recicla de forma indefinida; forma aleaciones para mejorar las prestaciones mecánicas y es resistente a la corrosión y oxidación.

PROPIEDADES MECÁNICAS

Tanto el cobre como sus aleaciones tienen una buena maquinabilidad, es decir, son fáciles de mecanizar. El cobre posee muy buena ductilidad y maleabilidad lo que permite producir láminas e hilos muy delgados y finos. Es un metal blando y su resistencia a la tracción es de 210 MPa, con un límite elástico de 33,3 MPa. Admite procesos de fabricación de deformación como laminación o forja, y procesos de soldadura y sus aleaciones adquieren propiedades diferentes con tratamientos térmicos como temple y recocido. En general, sus propiedades mejoran con bajas temperaturas lo que permite utilizarlo en aplicaciones criogénicas.

CARACTERÍSTICAS QUÍMICAS

En la mayoría de sus compuestos, el cobre presenta estados de oxidación bajos, siendo el más común el +2, aunque también hay algunos con estado de oxidación +1.
Expuesto al aire, el color rojo salmón, inicial se torna rojo violeta por la formación de óxido cuproso (Cu2O) para ennegrecerse posteriormente por la formación de óxido cúprico (CuO). La coloración azul del Cu+2 se debe a la formación del ion [Cu (OH2)6]+2.
Expuesto largo tiempo al aire húmedo, forma una capa adherente e impermeable de carbonato básico (carbonato cúprico) de color verde y venenoso. También pueden formarse pátinas de cardenillo, una mezcla venenosa de acetatos de cobre de color verdoso o azulado que se forma cuando los óxidos de cobre reaccionan con ácido acético, que es el responsable del sabor del vinagre y se produce en procesos de fermentación acética. Al emplear utensilios de cobre para la cocción de alimentos, deben tomarse precauciones para evitar intoxicaciones por cardenillo que, a pesar de su mal sabor, puede ser enmascarado con salsas y condimentos y ser ingerido.
Los halógenos atacan con facilidad al cobre, especialmente en presencia de humedad. En seco, el cloro y el bromo no producen efecto y el flúor sólo le ataca a temperaturas superiores a 500 °C. El cloruro cuproso y el cloruro cúprico, combinados con el oxígeno y en presencia de humedad producen ácido clorhídrico, ocasionando unas manchas de atacamita o paratacamita, de color verde pálido a azul verdoso, suaves y polvorientas que no se fijan sobre la superficie y producen más cloruros de cobre, iniciando de nuevo el ciclo de la erosión.
Los ácidos oxácidos atacan al cobre, por lo cual se utilizan estos ácidos como decapantes (ácido sulfúrico) y abrillantadores (ácido nítrico). El ácido sulfúrico reacciona con el cobre formando un sulfuro,  CuS (covelina)  o  Cu2S (calcocita) de color negro y agua. También pueden formarse sales de sulfato cúprico (antlerita) con colores de verde a azul verdoso. Estas sales son muy comunes en los ánodos de los acumuladores de plomo que se emplean en los automóviles.
El ácido cítrico disuelve el óxido de cobre, por lo que se aplica para limpiar superficies de cobre, lustrando el metal y formando citrato de cobre.

ALEACIONES Y TIPOS DE COBRE

Existe una amplia variedad de aleaciones de cobre, de cuyas composiciones dependen las características técnicas que se obtienen, por lo que se utilizan en multitud de objetos con aplicaciones técnicas muy diversas. El cobre se alea principalmente con los siguientes elementos: Zn, Sn, Al, Ni, Be, Si, Cd, Cr y otros en menor cuantía.
Según los fines a los que se destinan en la industria, se clasifican en aleaciones para forja y en aleaciones para moldeo. Para identificarlas tienen las siguientes nomenclaturas generales según la norma ISO 1190-1:1982 o su equivalente UNE 37102:1984

Latón (Cu-Zn)

El latón, también conocido como cuzin, es una aleación de cobre, cinc (Zn) y, en menor proporción, otros metales. Se obtiene mediante la fusión de sus componentes en un crisol o mediante la fusión y reducción de menas sulfurosas en un horno de reverbero.
En los latones industriales, el porcentaje de Zn se mantiene siempre inferior a 50%. Su composición influye en las características mecánicas, la fusibilidad y la capacidad de conformación por fundición, forja y mecanizado. En frío, los lingotes obtenidos se deforman plásticamente produciendo láminas, varillas o se cortan en tiras susceptibles de estirarse para fabricar alambres. Su densidad depende de su composición y generalmente ronda entre 8,4 g/cm3 y 8,7 g/cm3.
Las características de los latones dependen de la proporción de elementos que intervengan en la aleación de tal forma que algunos tipos de latón son maleables únicamente en frío, otros exclusivamente en caliente, y algunos no lo son a ninguna temperatura. Todos los tipos de latones se vuelven quebradizos cuando se calientan a una temperatura próxima al punto de fusión.
El latón es más duro que el cobre, pero fácil de mecanizar, grabar y fundir. Es resistente a la oxidación, a las condiciones salinas y es maleable, por lo que puede laminarse en planchas finas. Su maleabilidad varía la temperatura y con la presencia, incluso en cantidades mínimas, de otros metales en su composición.
Un pequeño aporte de plomo en la composición del latón mejora la maquinabilidad porque facilita la fragmentación de las virutas en el mecanizado. El plomo también tiene un efecto lubricante por su bajo punto de fusión, lo que permite ralentizar el desgaste de la herramienta de corte.
El latón tiene un color amarillo brillante, con parecido al oro, característica que es aprovechada en joyería, especialmente en bisutería, y en el galvanizado de elementos decorativos. Las aplicaciones de los latones abarcan otros campos muy diversos, como armamento, calderería, soldadura, fabricación de alambres, tubos de condensadores y terminales eléctricos. Como no es atacado por el agua salada, se usa también en las construcciones de barcos y en equipos pesqueros y marinos.
El latón no produce chispas por impacto mecánico, una propiedad atípica en las aleaciones. Esta característica convierte al latón en un material importante en la fabricación de envases para la manipulación de compuestos inflamables, cepillos de limpieza de metales y en pararrayos.

Bronce (Cu-Sn)

Las aleaciones en cuya composición predominan el cobre y el estaño (Sn) se conocen con el nombre de bronce y son conocidas desde la antigüedad. Hay muchos tipos de bronces que contienen además otros elementos como aluminio, berilio, cromo o silicio. El porcentaje de estaño en estas aleaciones está comprendido entre el 2 y el 22%. Son de color amarillento y las piezas fundidas de bronce son de mejor calidad que las de latón, pero son más difíciles de mecanizar y más caras.
La tecnología metalúrgica de la fabricación de bronce es uno de los procesos más importantes de la historia de la humanidad  pues dio origen a la llamada Edad de Bronce. El bronce fue la primera aleación fabricada voluntariamente por el ser humano: se realizaba mezclando el mineral de cobre (calcopirita, malaquita, etc.) y el de estaño (casiterita) en un horno alimentado con carbón vegetal. El anhídrido carbónico resultante de la combustión del carbón, reducía los minerales de cobre y estaño a metales. El cobre y el estaño que se fundían, se aleaban entre un 5 y un 10% en peso de estaño.
El bronce se emplea especialmente en aleaciones conductoras del calor, en baterías eléctricas y en la fabricación de válvulas, tuberías y uniones de fontanería. Algunas aleaciones de bronce se usan en uniones deslizantes, como cojinetes y descansos, discos de fricción; y otras aplicaciones donde se requiere alta resistencia a la corrosión como rodetes de turbinas o válvulas de bombas, entre otros elementos de máquinas. En algunas aplicaciones eléctricas es utilizado en resortes.

Alpaca (Cu-Ni-Zn)

Las alpacas o platas alemanas son aleaciones de cobre, níquel (Ni) y zinc (Zn), en una proporción de 50-70% de cobre, 13-25% de níquel, y 13-25% de zinc.   Sus propiedades varían de forma continua en función de la proporción de estos elementos en su composición, pasando de máximos de dureza a mínimos de conductividad.
Si a estas aleaciones de cobre-níquel-cinc se les añaden pequeñas cantidades de aluminio o hierro constituyen aleaciones que se caracterizan por su resistencia a la corrosión marina, por lo que se utilizan ampliamente en la construcción naval, principalmente en condensadores y tuberías, así como en la fabricación de monedas y de resistencias eléctricas.
Las aleaciones de alpaca tienen una buena resistencia a la corrosión y buenas cualidades mecánicas. Su aplicación se abarca materiales de telecomunicaciones, instrumentos y accesorios de fontanería y electricidad, como grifos, abrazaderas, muelles, conectores. También se emplea en la construcción y ferretería, para elementos decorativos y en las industrias químicas y alimentarias, además de materiales de vajillas y orfebrería.
El monel es una aleación que se obtiene directamente de minerales canadienses y tiene una composición de Cu=28-30%, Ni=66-67%, Fe=3-3,5%. Este material tiene gran resistencia a los agentes corrosivos y a las altas temperaturas.
Otro tipo de alpaca es el llamado platinoide, aleación de color blanco compuesta de 60% de cobre, 14% de níquel, 24% de cinc y de 1-2% de wolframio.

METALURGIA DEL COBRE

La metalurgia del cobre depende de que el mineral se presente en forma de sulfuros o de óxidos (cuproso u cúprico).
Como regla general una instalación metalúrgica de cobre que produzca 300.000 t/año de ánodos, consume 1.000.000 t/año de concentrado de cobre y como subproductos produce 900.000 t/año de ácido sulfúrico y 300.000 t/año de escorias.
Cuando se trata de aprovechar los residuos minerales, la pequeña concentración de cobre que hay en ellos se encuentra en forma de óxidos y sulfuros, y para recuperar ese cobre se emplea la tecnología llamada hidrometalurgia.
Esta tecnología se utiliza muy poco porque la casi totalidad de concentrados de cobre se encuentra formando sulfuros, siendo la producción mundial estimada de recuperación de residuos en torno al 15% de la totalidad de cobre producido.

Aplicaciones y usos del cobre

Ya sea considerando la cantidad o el valor del metal empleado, el uso industrial del cobre es muy elevado. Es un material importante en multitud de actividades económicas y ha sido considerado un recurso estratégico en situaciones de conflicto.

ELECTRICIDAD Y TELECOMUNICACIONES

El cobre es el metal no precioso con mejor conductividad eléctrica. Esto, unido a su ductilidad y resistencia mecánica, lo han convertido en el material más empleado para fabricar cables eléctricos, tanto de uso industrial como residencial. Asimismo se emplean conductores de cobre en numerosos equipos eléctricos como generadores, motores y transformadores. La principal alternativa al cobre en estas aplicaciones es el aluminio.
También son de cobre la mayoría de los cables telefónicos, los cuales además posibilitan el acceso a Internet. Las principales alternativas al cobre para telecomunicaciones son la fibra óptica y los sistemas inalámbricos. Por otro lado, todos los equipos informáticos y de telecomunicaciones contienen cobre en mayor o menor medida, por ejemplo en sus circuitos integrados, transformadores y cableado interno.

MEDIOS DE TRANSPORTE

El cobre se emplea en varios componentes de coches y camiones, principalmente los radiadores (gracias a su alta conductividad térmica y resistencia a la corrosión), frenos y cojinetes, además naturalmente de los cables y motores eléctricos. Un coche pequeño contiene en total en torno a 20 kg de cobre, subiendo esta cifra a 45 kg para los de mayor tamaño.
También los trenes requieren grandes cantidades de cobre en su construcción: 1 - 2 toneladas en los trenes tradicionales y hasta 4 toneladas en los de alta velocidad. Además las catenarias contienen unas 10 toneladas de cobre por kilómetro en las líneas de alta velocidad.
Por último, los cascos de los barcos incluyen a menudo aleaciones de cobre y níquel para reducir el ensuciamiento producido por los seres marinos.

CONSTRUCCIÓN

Una gran parte de las redes de transporte de agua están hechas de cobre o latón, debido a su resistencia a la corrosión y sus propiedades anti-bacterianas, habiendo quedado las tuberías de plomo en desuso por sus efectos nocivos para la salud humana. Frente a las tuberías de plástico, las de cobre tienen la ventaja de que no arden en caso de incendio y por tanto no liberan humos y gases potencialmente tóxicos.
El cobre y, sobre todo, el bronce se utilizan también como elementos arquitectónicos y revestimientos en tejados, fachadas, puertas y ventanas. El cobre se emplea también a menudo para los pomos de las puertas de locales públicos, ya que sus propiedades anti-bacterianas evitan la propagación de epidemias.
Dos aplicaciones clásicas del bronce en la construcción y ornamentación son la realización de estatuas y de campanas.
El sector de la construcción consume actualmente (2008) el 26% de la producción mundial de cobre.

1 comentarios:

  1. Every Young ladies , Womens & Girl are Found of Shopping .For an Auspicious Occassions Like Festival , Wedding Ceremonies Engagements Ceremony So, Here We Have Some For You In Your Budget.
    For More...
    orkani designer suit

    ResponderEliminar